AGS-Engineering Inc.


We are your one stop engineering services provider


Finite Element Method


The finite element method (FEM) (sometimes referred to as finite element analysis (FEA)) is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as of integral equations. The solution approach is based either on eliminating the differential equation completely (steady state problems), or rendering the PDE into an approximating system of ordinary differential equations, which are then numerically integrated using standard techniques such as Euler's method, Runge-Kutta, etc.



In solving partial differential equations, the primary challenge is to create an equation that approximates the equation to be studied, but is numerically stable, meaning that errors in the input data and intermediate calculations do not accumulate and cause the resulting output to be meaningless. There are many ways of doing this, all with advantages and disadvantages. The Finite Element Method is a good choice for solving partial differential equations over complicated domains (like cars and oil pipelines), when the domain changes (as during a solid state reaction with a moving boundary), when the desired precision varies over the entire domain, or when the solution lacks smoothness. For instance, in a frontal crash simulation it is possible to increase prediction accuracy in ''important'' areas like the front of the car and reduce it in its rear (thus reducing cost of the simulation); Another example would be the simulation of the weather pattern on Earth, where it is more important to have accurate predictions over land than over the wide-open sea.



Application:


A variety of specializations under the umbrella of the mechanical engineering discipline (such as aeronautical, biomechanical, and automotive industries) commonly use integrated FEM in design and development of their products. Several modern FEM packages include specific components such as thermal, electromagnetic, fluid, and structural working environments. In a structural simulation, FEM helps tremendously in producing stiffness and strength visualizations and also in minimizing weight, materials, and costs.



FEM allows detailed visualization of where structures bend or twist, and indicates the distribution of stresses and displacements. FEM software provides a wide range of simulation options for controlling the complexity of both modeling and analysis of a system. Similarly, the desired level of accuracy required and associated computational time requirements can be managed simultaneously to address most engineering applications. FEM allows entire designs to be constructed, refined, and optimized before the design is manufactured.



This powerful design tool has significantly improved both the standard of engineering designs and the methodology of the design process in many industrial applications. The introduction of FEM has substantially decreased the time to take products from concept to the production line. It is primarily through improved initial prototype designs using FEM that testing and development have been accelerated.



In summary, benefits of FEM include increased accuracy, enhanced design and better insight into critical design parameters, virtual prototyping, fewer hardware prototypes, a faster and less expensive design cycle, increased productivity, and increased revenue.



If you have a project that may benefit from FEM, contact us and our seasoned FEM engineers will be happy to help you.



If you are mostly interested in our manufacturing capabilities instead of engineering capabilities, we recommend you to visit our custom manufacturing site http://www.agstech.net



If you would like to visit our store looking for industrial test and metrology equipment, quality control and inspection equipment...etc., that may be suitable for your projects, please click here: http://www.sourceindustrialsupply.com





















































AGS-Engineering, Engineering Services and Design - Reverse Engineering - Research and Product Development,
Phone: 505-5506501 or 505-5655102, Fax: 505-814-5778, Skype: agstech1, Email: projects@ags-engineering.com, Website: http://www.ags-engineering.com, Mailing address for checks, documents, paperwork: AGS-Engineering, PO Box: 4457, Albuquerque, NM, 87196 USA; To meet our marketing and sales team in person: AGS-Engineering, AMERICAS PARKWAY CENTER, 6565 Americas Parkway NE, Suite 200, Albuquerque, NM 87110, USA
VISIT AGS-ENGINEERING.COM FLASH SITE NOW!