AGS-Engineering Inc.

We are your one stop engineering services provider

Fiber Optic Design

Even though fiber optic design can be considered under guided wave optic design, due to its vast applications in telecommunication and other fields like health care, we are devoting a separate page for this subject.

An optical fiber is a thin, flexible, transparent fiber that acts as a waveguide, or ''light pipe'', to transmit light between the two ends of the fiber. The field concerned with the design and application of optical fibers is known as fiber optics. Optical fibers are widely used in fiber-optic communications, which permits transmission over longer distances and at higher bandwidths (data rates) than other forms of communication. Fibers are used instead of metal wires because signals travel along them with less loss and are also immune to electromagnetic interference. Fibers are also used for several other applications, such as illumination, and are wrapped in bundles so they can be used to carry images, thus allowing viewing in tight spaces. Specially designed fibers are used for a variety of other applications, including sensors and fiber lasers.

Optical fiber typically consists of a transparent core surrounded by a transparent cladding material with a lower index of refraction. Light is kept in the core by total internal reflection. This causes the fiber to act as a waveguide. Fibers which support many propagation paths or transverse modes are called multi-mode fibers (MMF), while those which can only support a single mode are called single-mode fibers (SMF). Multi-mode fibers generally have a larger core diameter, and are used for short-distance communication links and for applications where high power must be transmitted. Single-mode fibers are used for most communication links longer than 1,050 meters (3,440 ft).

Optical fiber communication:

Optical fiber can be used as a medium for telecommunication and networking because it is flexible and can be bundled as cables. It is especially advantageous for long-distance communications, because light propagates through the fiber with little attenuation compared to electrical cables. This allows long distances to be spanned with few repeaters. Additionally, the per-channel light signals propagating in the fiber have been modulated at rates as high as 111 gigabits per second by NTT,although 10 or 40 Gbit/s is typical in deployed systems. Each fiber can carry many independent channels, each using a different wavelength of light (wavelength-division multiplexing (WDM)). The net data rate (data rate without overhead bytes) per fiber is the per-channel data rate reduced by the FEC overhead, multiplied by the number of channels (usually up to eighty in commercial dense WDM systems as of 2008. The current laboratory fiber optic data rate record, held by Bell Labs in Villarceaux, France, is multiplexing 155 channels, each carrying 100 Gbit/s over a 7000 km fiber. Nippon Telegraph and Telephone Corporation have also managed 69.1 Tbit/s over a single 240 km fiber (multiplexing 432 channels, equating to 171 Gbit/s per channel). Bell Labs also broke a 100 Petabit per second kilometer barrier (15.5 Tbit/s over a single 7000 km fiber).

For short distance applications, such as creating a network within an office building, fiber-optic cabling can be used to save space in cable ducts. This is because a single fiber can often carry much more data than many electrical cables, such as 4 pair Cat-5 Ethernet cabling. Fiber is also immune to electrical interference; there is no cross-talk between signals in different cables and no pickup of environmental noise. Non-armored fiber cables do not conduct electricity, which makes fiber a good solution for protecting communications equipment located in high voltage environments such as power generation facilities, or metal communication structures prone to lightning strikes. They can also be used in environments where explosive fumes are present, without danger of ignition. Wiretapping is more difficult compared to electrical connections, and there are concentric dual core fibers that are said to be tap-proof.

Fiber optic sensors:

Fibers have many uses in remote sensing. In some applications, the sensor is itself an optical fiber. In other cases, fiber is used to connect a non-fiberoptic sensor to a measurement system. Depending on the application, fiber may be used because of its small size, or the fact that no electrical power is needed at the remote location, or because many sensors can be multiplexed along the length of a fiber by using different wavelengths of light for each sensor, or by sensing the time delay as light passes along the fiber through each sensor. Time delay can be determined using a device such as an optical time-domain reflectometer.

Optical fibers can be used as sensors to measure strain, temperature, pressure and other quantities by modifying a fiber so that the quantity to be measured modulates the intensity, phase, polarization, wavelength or transit time of light in the fiber. Sensors that vary the intensity of light are the simplest, since only a simple source and detector are required. A particularly useful feature of such fiber optic sensors is that they can, if required, provide distributed sensing over distances of up to one meter.

Extrinsic fiber optic sensors use an optical fiber cable, normally a multi-mode one, to transmit modulated light from either a non-fiber optical sensor, or an electronic sensor connected to an optical transmitter. A major benefit of extrinsic sensors is their ability to reach places which are otherwise inaccessible. An example is the measurement of temperature inside aircraft jet engines by using a fiber to transmit radiation into a radiation pyrometer located outside the engine. Extrinsic sensors can also be used in the same way to measure the internal temperature of electrical transformers, where the extreme electromagnetic fields present make other measurement techniques impossible. Extrinsic sensors are used to measure vibration, rotation, displacement, velocity, acceleration, torque, and twisting. A solid state version of the gyroscope using the interference of light has been developed. The fiber optic gyroscope (FOG) has no moving parts and exploits the Sagnac effect to detect mechanical rotation.

A common use for fiber optic sensors are in advanced intrusion detection security systems, where the light is transmitted along the fiber optic sensor cable, which is placed on a fence, pipeline or communication cabling, and the returned signal is monitored and analysed for disturbances. This return signal is digitally processed to identify if there is a disturbance, and if an intrusion has occurred an alarm is triggered by the fiber optic security system.

Other uses of optical fibers:

Fibers are widely used in illumination applications. They are used as light guides in medical and other applications where bright light needs to be shone on a target without a clear line-of-sight path. In some buildings, optical fibers are used to route sunlight from the roof to other parts of the building. Optical fiber illumination is also used for decorative applications, including signs, art, and artificial Christmas trees. Swarovski boutiques use optical fibers to illuminate their crystal showcases from many different angles while only employing one light source. Optical fiber is an intrinsic part of the light-transmitting concrete building product, LiTraCon.

Optical fiber is also used in imaging optics. A coherent bundle of fibers is used, sometimes along with lenses, for a long, thin imaging device called an endoscope, which is used to view objects through a small hole. Medical endoscopes are used for minimally invasive exploratory or surgical procedures (endoscopy). Industrial endoscopes (see fiberscope or borescope) are used for inspecting anything hard to reach, such as jet engine interiors.

In spectroscopy, optical fiber bundles are used to transmit light from a spectrometer to a substance which cannot be placed inside the spectrometer itself, in order to analyze its composition. A spectrometer analyzes substances by bouncing light off of and through them. By using fibers, a spectrometer can be used to study objects that are too large to fit inside, or gasses, or reactions which occur in pressure vessels.

An optical fiber doped with certain rare earth elements such as erbium can be used as the gain medium of a laser or optical amplifier. Rare-earth doped optical fibers can be used to provide signal amplification by splicing a short section of doped fiber into a regular (undoped) optical fiber line. The doped fiber is optically pumped with a second laser wavelength that is coupled into the line in addition to the signal wave. Both wavelengths of light are transmitted through the doped fiber, which transfers energy from the second pump wavelength to the signal wave. The process that causes the amplification is stimulated emission.

Optical fibers doped with a wavelength shifter are used to collect scintillation light in physics experiments.

Optical fiber can be used to supply a low level of power (around one watt) to electronics situated in a difficult electrical environment. Examples of this are electronics in high-powered antenna elements and measurement devices used in high voltage transmission equipment.

A growing trend in iron sights for arms, is the use of short pieces of optical fiber for contrast enhancement dots, made in such a way that ambient light falling on the length of the fiber is concentrated at the tip, making the dots slightly brighter than the surroundings. This method is most commonly used in front sights, but many makers offer sights that use fiber optics on front and rear sights. Fiber optic sights can now be found on handguns, rifles, and shotguns, both as aftermarket accessories and a growing number of factory guns.

We have experts in our team who specialize in component level and also experts specialized in system level fiber optic projects. With years of experience from telecommunication companies, sensor developers and military equipment developers engaged in fiber optics they are ready to guide you with your projects. We are different because we can handle multidisciplinary engineering projects involving several specialties. We are a call away, please contact us to discuss your needs.

If you are mostly interested in our manufacturing capabilities instead of engineering capabilities, we recommend you to visit our custom manufacturing site

If you would like to visit our store looking for industrial test and metrology equipment, quality control and inspection equipment...etc., that may be suitable for your projects, please click here:

AGS-Engineering, Engineering Services and Design - Reverse Engineering - Research and Product Development,
Phone: 505-5506501 or 505-5655102, Fax: 505-814-5778, Skype: agstech1, Email:, Website:, Mailing address for checks, documents, paperwork: AGS-Engineering, PO Box: 4457, Albuquerque, NM, 87196 USA; To meet our marketing and sales team in person: AGS-Engineering, AMERICAS PARKWAY CENTER, 6565 Americas Parkway NE, Suite 200, Albuquerque, NM 87110, USA